Modelling Patterns and Forms in Nature II: (Easter 2019) Eggs

When you start with a portrait and search for a pure form, 
a clear volume, through successive eliminations, you arrive 
inevitably at the egg. Likewise, starting with the egg and 
following the same process in reverse, one finishes with 
the portrait.

PABLO PICASSO

Easter is coming and what better time to talk about eggs!

During my recent mathematical explorations of natural shapes and forms, my attention has been caught by the shape of birds’ eggs. In the exciting book by J. Adams, A Mathematical Walk in Nature [1], you can find a short review of the different mathematical modeling approaches to describe the shape of an egg. Among them, the geometrical one by Baker [2] is revealed as one of the most versatile as it can accurately reproduce the shapes of a large variety of bird eggs [2]. More recently, the model was used to perform a systematic and comparative study of the shape of bird eggs. This study, published in Science magazine [3], a two-dimensional morphological space defined by the parameters of Baker’s equation, has been used to show the diversity of the shape of 1400 species of birds. Combining this information with a mechanical model and phylogenetics information, the authors have shown that egg shape correlates with flight ability on broad taxonomic scales. They concluded that adaptations for flight may have been critical drivers of egg-shape variation in birds [3].

Continue reading