Lissajous-Bowditch curves

Try to glue a small mirror to an end of a bent piece of wire fixed to a stable platform and let the laser beam of a laser pointer reflect on it. Entangled spires of an ephemeral dragon of light will perform a hypnotic dance on the wall of your room. This voluptuous dance is the results of two mutually perpendicular harmonic oscillations produced by the oscillations of the elastic wire. 

The curved patterns are called Lissajous-Bowditch figures and named after the French physicist Jules Antoine Lissajous who did a detailed study of them (published in his Mémoire sur l’étude optique des mouvements vibratoires, 1857). The American mathematician Nathaniel Bowditch (1773 – 1838) conducted earlier and independent studies on the same curves and for this reason, the figures are also called  Lissajous-Bowditch curves. Lissajous invented different mechanical devices consisting of two mirrors attached to two oriented diapasons (or other oscillators) by double reflecting a collimated ray of light on a screen, produce these figures upon oscillations of the diapasons.  The diapason can be substituted with elastic wires, speakers, pendulum or electronic circuits. I the last case, the light is the electron beam of a cathodic tube (or its digital equivalent)  of an oscilloscope. This blog is about these curves and shows demonstrations and applications.

Continue reading
Posted in Uncategorized | Leave a comment

The Magic Imaginary Numbers

Complex numbers may appear a difficult subject given the name. However, there is nothing of really complicated about complex numbers. However, they definitively add a pinch of \em magic \em in the mathematics manipulations that you can do with them!

Continue reading
Posted in Uncategorized | Leave a comment

Berechnung der Konstante von Madelung

Die gesamte Coulomb-Potentialenergie eines Kristalls ist die Summe der einzelnen Terme der elektrostatischen Potentialenergie

\displaystyle V_{AB} = \frac{e^2}{4\pi\epsilon_0} \frac{Z_AZ_B}{r_{AB}} \hfill (1)

zum Laden von Ionen  {q_A} e {q_B} und  getrennt nach Entfernung {r_{AB}}.

Die Summe erstreckt sich auf alle im Festkörper vorhandenen Ionenpaare für alle kristallinen Strukturen.

Die Summe konvergiert sehr langsam, weil die ersten Nachbarn des Zentralatoms einen substanziellen Beitrag zur Summe mit einem negativen Term liefern, während die benachbarten Sekunden nur mit einem etwas weicheren positiven Term beitragen, und so weiter. Auf diese Weise wird der Gesamteffekt sicherstellen, dass eine totale Initation der Anziehung zwischen Kationen und Anionen vorherrscht mit einem (negativen) Beitrag, der für die Gesamtenergie günstig ist.

Continue reading
Posted in Science Topics | Leave a comment

The Fourier Series

Pure mathematics is much more than an armory of tools and techniques for the applied mathematician. On the other hand, the pure mathematician has ever been grateful to applied mathematics for stimulus and inspiration. From the vibrations of the violin string they have drawn enchanting harmonies of Fourier Series, and to study the triode valve they have invented a whole theory of non-linear oscillations.

George Frederick James Temple In 100 Years of Mathematics: a Personal Viewpoint (1981).

Figure 1: Jean-Baptiste Joseph Fourier(source wikipedia)

The Fourier Series is a very important mathematics tool discovered by Jean-Baptiste Joseph Fourier in the 18th century. The Fourier series is used in many important areas of science and engineering. They are used to give an analytical approximate description of complex periodic function or series of data.  In this blog, I am going to give a short introduction to it.

Continue reading
Posted in Uncategorized | Leave a comment

La Serie​ di Taylor

La serie di Taylor è un utilissimo strumento matematico ma a volte difficile da comprendere per gli studenti. In questo blog, ne darò una breve descrizione dando qualche esempio di applicazione.

Chi è il signor Taylor?

Brook Taylor (1685 – 1731) era un matematico britannico del XVII secolo che ha dimostrato la formula che porta il suo nome, e l’argomento di questo blog, nel volume Methodus Incrementorum Directa et Inversa (1715). Maggiori informazioni si possono trovare nella corrispondente pagina della wikipedia.

Continue reading
Posted in Uncategorized | Leave a comment

The Taylor Series

The Taylor series is a mathematical tool that, sometimes, it is not easy to immediately grasp by freshman students. In this blog, I will give a short review of it giving some examples of applications.

Who is Mr. Taylor?

Brook Taylor (1685 – 1731) was a 17th-century British mathematician. He demonstrated the celebrated Taylor formula, the topics of this blog, in his masterwork Methodus Incrementorum Directa et Inversa (1715). For more information, just give a read to the following wiki page.

Continue reading
Posted in Uncategorized | 1 Comment

Modeling Natural Shapes: Sunflowers Florets and the Golden Ratio

Il girasole piega a occidente
e già precipita il giorno nel suo
occhio in rovina … 
from the poem  “Quasi un madrigale” by Salvatore Quasimodo.


Continue reading

Posted in Programming, Science Topics | Leave a comment