SIMPROS is a simple hypertextual database that provides a list of proteins that have been studied using molecular dynamics simulations in non-aqueous solvents. The current version is based on my previous two reviews:
- D. Roccatano. Computer simulations study of biomolecules in non-aqueous solutions. In Advances in Protein and Peptide Sciences. (2013), Vol. 1, Ed. Ben M. Dunn. Bentham Science Publisher. Preprint here.
- Roccatano. Computer Simulations Study of Biomolecules in Non-Aqueous or Cosolvent/Water Mixture Solutions Current Peptide and Peptide Science. 9(4), 407-426, (2008).
Suggestions to improve, correct and keep update this list are welcome!
NOTE THE SITE IS UNDER CONSTRUCTION
PROTEINS SOLVENTS FORCE-FIELDS
LIST OF PROTEINS
Ubiquitin |
Cutinase |
Pseudolysin |
Thermolysin |
Barnase |
CI2 |
Cytochrome C |
Monooxygenase P450 BM3 |
Subtilisin BPN’ |
Subtilisin Carlsberg |
Acylphospatase |
Myoglobin |
Lysozime |
α-Chymotrypsin |
Lipase B |
Burkholderia cepacia lipase |
β-2 microglobulin |
Protein L |
Villin headpiece protein |
Human zinger Finger Protein |
Triosephosphate isomerase from Trypanosoma cruzi |
Cardosin A |
Cold Shock protein Bc-CsP from Bacillus caldolyticus |
DATABASE
Ubiquitin |
||
Hexane |
5 |
GROMOS |
Pieraccini, S.; Sironi, M.; Colombo, G., Modeling enzymatic processes: a molecular simulation analysis of the origins of regioselectivity. Chem. Phys. Lett. 2006, 418, 373-376. |
||
Zhu, L. J.; Yang, W.; Meng, Y. Y.; Xiao, X. C.; Guo, Y. Z.; Pu, X. M.; Li, M. L., Effects of Organic Solvent and Crystal Water on gamma- Chymotrypsin in Acetonitrile Media: Observations from Molecular Dynamics Simulation and DFT Calculation. J. Phys. Chem. B 2012, 116 (10), 3292-3304. |
||
60% MeOH/water |
0.5 |
ENCAD [282] |
Alonso, D. O. V. and Daggett, V.; (1995) Bioph. J. 2006, 90, 1855-1864. |
||
Cutinase |
||
Pure diisopropyl ether and water mixtures |
10 |
GROMOS |
Allison, J. R.; Mueller, M.; van Gunsteren, W. F., A comparison of the different helices adopted by alpha- and beta-peptides suggests different reasons for their stability. Protein Sci. 2010, 19 (11), 2186-2195. |
||
Allison, J. R.; Mueller, M.; van Gunsteren, W. F., A comparison of the different helices adopted by alpha- and beta-peptides suggests different reasons for their stability. Protein Sci. 2010, 19 (11), 2186-2195. |
||
Pure EtOH and water mixtures |
10 |
GROMOS |
Allison, J. R.; Mueller, M.; van Gunsteren, W. F., A comparison of the different helices adopted by alpha- and beta-peptides suggests different reasons for their stability. Protein Sci. 2010, 19 (11), 2186-2195. |
||
Allison, J. R.; Mueller, M.; van Gunsteren, W. F., A comparison of the different helices adopted by alpha- and beta-peptides suggests different reasons for their stability. Protein Sci. 2010, 19 (11), 2186-2195. |
||
Pure Hexane and water mixtures |
4/10 |
GROMOS |
Pieraccini, S.; Sironi, M.; Colombo, G., Modeling enzymatic processes: a molecular simulation analysis of the origins of regioselectivity. Chem. Phys. Lett. 2006, 418, 373-376. |
||
Zhu, L. J.; Yang, W.; Meng, Y. Y.; Xiao, X. C.; Guo, Y. Z.; Pu, X. M.; Li, M. L., Effects of Organic Solvent and Crystal Water on gamma- Chymotrypsin in Acetonitrile Media: Observations from Molecular Dynamics Simulation and DFT Calculation. J. Phys. Chem. B 2012, 116 (10), 3292-3304. |
||
Pure Hexane and water mixtures |
4/10 |
GROMOS |
Allison, J. R.; Mueller, M.; van Gunsteren, W. F., A comparison of the different helices adopted by alpha- and beta-peptides suggests different reasons for their stability. Protein Sci. 2010, 19 (11), 2186-2195. |
||
Pure [BMIM][PF6] and [BMIM][NO3] |
10 |
GROMOS96 (43A1) |
Street, T. O.; Bolen, D. W.; Rose, G. D., A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA 2006, |
||
Pseudolysin |
||
25 % water/EtOH |
1000 |
GROMOS 53A6 |
Lousa, D.; Baptista, A. M.; Soares, C. M., Analyzing the Molecular Basis of Enzyme Stability in Ethanol/Water Mixtures Using Molecular Dynamics Simulations. J. Chem. Inf. Model. 2012,52(2), 465-473. |
||
Thermolysin |
||
25 % water/EtOH |
1000 |
GROMOS 53A6 |
Lousa, D.; Baptista, A. M.; Soares, C. M., Analyzing the Molecular Basis of Enzyme Stability in Ethanol/Water Mixtures Using Molecular Dynamics Simulations. J. Chem. Inf. Model. 2012,52(2), 465-473. |
||
Barnase |
||
Urea 8 M |
0.8/2 |
CHARMM and OPLS |
|
||
CI2 |
||
Hexane |
0.3 |
AMBER |
Toba, S.; Hartsough, D. S.; Merz, K. M., Solvation and dynamics of chymotrypsin in hexane. J. Am. Chem. Soc. 1996,118(27), 6490-6498. |
||
Urea 8 M |
20 |
ENCAD |
Bennion, B. J.; Daggett, V., The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl Acad. Sci. USA 2003,100(9), 5142-5147. |
||
Urea 4 M |
10 |
ENCAD |
Bennion, B. J.; Daggett, V., Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution. Proc. Natl. Acad. Sci. USA 2004,101, 6433. |
||
4 M TMAO/ 8 M Urea |
10 |
ENCAD |
Bennion, B. J.; Daggett, V., Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution. Proc. Natl. Acad. Sci. USA 2004,101, 6433. | ||
10 M Urea |
150-800 |
GROMOS G53a6 |
Lindgren, M.; Westlund, P. O., The effect of urea on the kinetics of local unfolding processes in chymotrypsin inhibitor 2. Biophys. Chem. 2010,151(1-2), 46-53. |
||
8 M Urea/1M Trehalose |
100 |
GROMOS 43a1 |
Zhang, N.; Liu, F. F.; Dong, X. Y.; Sun, Y., Molecular Insight into the Counteraction of Trehalose on Urea-Induced Protein Denaturation Using Molecular Dynamics Simulation. J. Phys. Chem. B 2012,116(24), 7040-7047. |
||
Cytochrome P450 BM3 |
||
14% (v/v) DMSO/water |
15 |
GROMOS |
|
||
cytochrome c |
||
60% (v/v) Glycerol/ water |
1 |
CHARMM |
Scharnagl, C.; Reif, M.; Friedrich, J., Local compressibilities of proteins: comparison of optical experiments and simulations for horse heart cytochrome-c. Bioph. J. 2005,89, 64-75. |
||
Subtilisin BPN |
||
Octane |
0.45 |
AMBER |
Yang, L.; Dordick, J. S.; Garde, S., Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys. J. 2004,87, 812-821. |
||
THF |
0.45 |
AMBER |
Yang, L.; Dordick, J. S.; Garde, S., Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys. J. 2004,87, 812-821. | ||
ACN |
3.6/0.45 |
AMBER |
|
||
Subtilisin Carlsberg |
||
DMF |
0.30 |
AMBER |
Colombo, G.; Toba, S.; Merz, K. M., Rationalization of the Enantioselectivity of Subtilisin in DMF. J. Am. Chem. Soc. 1999,121, 3486-3493. |
||
DMSO |
0.74 |
AMBER |
Zheng, Y. J.; Ornstein, R. L., A molecular dynamics and quantum mechanics analysis of the effect of DMSO on enzyme structure and dynamics: Subtilisin. J. Am. Chem. Soc. 1996,118(17), 4175-4180. |
||
Hexane |
10 |
GROMOS 53A6 |
Lousa, D.; Baptista, A. M.; Soares, C. M., Structural determinants of ligand imprinting: A molecular dynamics simulation study of subtilisin in aqueous and apolar solvents. Protein Sci. 2011,20(2), 379-386. |
||
ACN |
10 |
GROMOS 53A6 |
Lousa, D.; Cianci, M.; Helliwell, J. R.; Halling, P. J.; Baptista, A. M.; Soares, C. M., Interaction of Counterions with Subtilisin in Acetonitrile: Insights from Molecular Dynamics Simulations. J. Phys. Chem. B 2012,116(20), 5838-5848. |
||
Acylphospatase |
||
25% (v/v) TFE/water |
80 |
GROMOS |
Flöck., D.; Daidone, I.; Di Nola, A., A molecular dynamics study of acylphosphatase in aggregation-promoting conditions: the influence of trifluoroethanol/water solvent. Biopolymers 2004,75, 491-496. |
||
Carboxy-myoglobin |
||
Trehalose/ water glass |
0.3 |
CHARMM |
Cottone, G.; Cordone, L.; Ciccotti, G., Molecular dynamics simulation of carboxy-mioglobin embedded in a trehalose-water matrix. Bioph. J. 2001,80, 931-937. |
||
Glycerol glass |
10 |
CHARMM |
Curtis, J. E.; Dirama, T. E.; Carri, G. A.; Tobias, D. J., Inertial suppression of protein dynamics in a binary glycerol-trehalose glass. J. Phys. Chem. B 2006,110(46), 22953-22956. | ||
Lysozyme |
||
Trehalose |
2.5 |
GROMOS |
Lins, R. D.; Pereira, C. S.; Hünenberger, H., Trehalose-protein interaction in aqueous solution. Proteins: Struct. Funct. and Bioinformatics 2004,55, 177-186. |
||
Glycerol |
2 |
AMBER |
Dirama, T. E.; Carri, G. A.; Sokolov, A. P., Coupling between lysozyme and glycerol dynamics: Microscopic insights from molecular-dynamics simulations. J. Chem. Phys. 2005,122(24). |
||
Glycerol/water 5.87 M |
20 |
CHARMM42 (c32b2) |
Vagenende, V.; Yap, M. G. S.; Trout, B. L., Molecular Anatomy of Preferential Interaction Coefficients by Elucidating Protein Solvation in Mixed Solvents: Methodology and Application for Lysozyme in Aqueous Glycerol. J. Phys. Chem. B 2009,113(34), 11743-11753. |
||
Urea 8M |
1000 |
CHARMM |
Hua, L.; Zhou, R. H.; Thirumalai, D.; Berne, B. J., Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc. Natl. Acad. Sci. USA 2008,105(44), 16928-16933. |
||
α-Chymotrypsin |
||
30 % TFE/water |
35 |
GROMOS96 |
Rezaei-Ghaleh, N.; Amininasab, M.; Nemat-Gorgani, M., Conformational Changes of alpha-Chymotrypsin in a Fibrillation-Promoting Condition: A Molecular Dynamics Study. Biophys. J. 2008,95(9), 4139-4147. |
||
Different polyarginine (R,RR,RRR) |
100 |
CHARMM27 |
Shukla, D.; Schneider, C. P.; Trout, B. L., Complex Interactions between Molecular Ions in Solution and Their Effect on Protein Stability. J. Am. Chem. Soc. 2011,133(46), 18713-18718. | ||
ACN |
8 |
AMBER03 |
Zhu, L. J.; Yang, W.; Meng, Y. Y.; Xiao, X. C.; Guo, Y. Z.; Pu, X. M.; Li, M. L., Effects of Organic Solvent and Crystal Water on gamma-Chymotrypsin in Acetonitrile Media: Observations from Molecular Dynamics Simulation and DFT Calculation. J. Phys. Chem. B 2012,116(10), 3292-3304. |
||
Candida Antartica Lipase B |
||
Methanol chloroform. |
2.5 |
AMBER |
Trodler, P.; Pleiss, J., Modeling structure and flexibility of Candida Antarctica lipase B in organic solvents. BMC Struct. Biol. 2008,8. |
||
Hexane, tert-butyl ether, methanol, tert- butyl alcohol |
20 |
CHARMM27 |
1996, 118, 11695-11700. |
||
Supercritical CO2/water mixtures |
20 |
OPLS-AA |
Silveira, R. L.; Martinez, J.; Skaf, M. S.; Martinez, L., Enzyme Microheterogeneous Hydration and Stabilization in Supercritical Carbon Dioxide. J. Phys. Chem. B 2012,116(19), 5671-5678 |
||
BMIM-PF6, BMIM-NO3, BMIM-BF4, MOEMIM-BF4BAGUA-BF4, BCGUA-BF4, MCGUA-NO3, DCGUA-NO3 | 5 |
AMBER |
Klaehn, M.; Lim, G. S.; Wu, P., How ion properties determine the stability of a lipase enzyme in ionic liquids: A molecular dynamics study. Phys. Chem. Chem. Phys. 2011,13(41), 18647-18660. |
||
Burkholderia cepacia lipase |
||
Toluene |
30 |
Amber99 |
Trodler, P.; Schmid, R. D.; Pleiss, J., Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase. BMC Struct. Biol. 2009,9. |
||
β-2 microglobulin |
||
26% TFE/water |
60 |
CHARMM |
Fogolari, F.; Corazza, A.; Varini, N.; Rotter, M.; Gumral, D.; Codutti, L.; Rennella, E.; Viglino, P.; Bellotti, V.; Esposito, G., Molecular dynamics simulation of beta(2)-microglobulin in denaturing and stabilizing conditions. Proteins: Struct. Funct. and Bioinformatics 2011,79(3), 986-1001. | ||
Protein L |
||
Urea 10 M |
30 |
GROMOS96 (43a1) |
Rocco, A. G.; Mollica, L.; Ricchiuto, P.; Baptista, A. M.; Gianazza, E.; Eberini, I., Characterization of the protein unfolding processes induced by urea and temperature. Biophys. J. 2008,94(6), 2241-2251. |
||
Villin headpiece protein HP-35 and A doubly norleucine-substituent mutant (Lys24Nle/Lys29Nle) |
||
Urea 5 M |
200 |
AMBER99 |
Wei, H. Y.; Yang, L. J.; Gao, Y. Q., Mutation of Charged Residues to Neutral Ones Accelerates Urea Denaturation of HP-35. J. Phys. Chem. B 2010,114(36), 11820-11826. |
||
Human zinger Finger Protein |
||
200 |
CHARMM |
|
Haberler, M.; Schroeder, C.; Steinhauser, O., Solvation studies of a zinc finger protein in hydrated ionic liquids. Phys. Chem. Chem. Phys. 2011,13(15), 6924-6938. | ||
Triosephosphate isomerase from Trypanosoma cruzi |
||
Decane |
40 |
GROMOS96 (43a2) |
Diaz-Vergara, N.; Pineiro, A., Molecular dynamics study of triosephosphate isomerase from Trypanosoma cruzi in water/decane mixtures. J. Phys. Chem. B 2008,112(11), 3529-3539. |
||
Cardosin A |
||
10, 90 % (v/v) TFE/water |
100 |
GROMOS 53a6 |
Fraga, A. S.; Esteves, A. C.; Micaelo, N.; Cruz, P. F.; Brito, R. M. M.; Nutley, M.; Cooper, A.; Barros, M. M. T.; Pires, E. M. V., Functional and conformational changes in the aspartic protease cardosin A induced by TFE. Intl. J. Biol. Macro. 2012,50(2), 323-330. |
||
Cold Shock protein Bc-CsP from Bacillus caldolyticus |
||
Urea 8M |
453 |
OPLS-AA |
Stumpe, M. C.; Grubmuller, H., Urea Impedes the Hydrophobic Collapse of Partially Unfolded Proteins. Biophys. J. 2009,96(9), 3744-3752.
|