The Logistic Map and the Feigenbaum Constants: a Retro Programming Inspired Excursion

“… Mitchell Feigenbaum was an unusual case. He had exactly one published article to his name, and he was working on nothing that seemed to have any particular promise. His hair was a ragged mane, sweeping back from his wide brow in the style of busts of German composers… At the age of twenty he had already become a savant among savants, an ad hoc consultant [at Los Alamos National Laboratory, USA] whom scientist would go to see about any expecially intractable problem.”

James Gleick, Chaos: the amazing science of the unpredectable.

This year, on June 30th 2019, Mitchell J. Feigenbaum died at the age of 74. Feigenbaum was an American mathematician that became famous with the discovery of the universal constants that bear his name. In the middle of the ’80, reading Le Scienze magazine (the Italian edition of Scientific American) I got to know of the contribution to the chaos theory of this charismatic mathematician. In particular, I was delighted by reading the Douglas Hofstadter’s article in the rubric “Temi Metamagici” ( Methamagical themes) (Scientific American, November 1981). The article explained the emergence of the chaos in the iteration map of the logistic equation, the same equation deeply studied by Feigenbaum. The full story about the Mitchell Feigenbaum and his discovery of his universal constants is delightly narrated in the beautiful book Chaos:the amazing science of the unpredectable by J. Gleick [1]. Here it is just another small extract:

“… in the summer of 1975, at a gathering in Aspen, Colorado, he heard Steve Smale [another key mathematicial in the developing of the chaos theory, NDA] talk about some of the mathematical qualities of the same quadratic difference equation [the same studied by Robert May, NDA]. Smale seemed to think that there were some interesting open questions about the exact point at which the mapping changes from periodic to chaotic. As always, Smale had a sharp instinct for questions worth exploring. Feigenbaum decided to look into it once more.”[1]

Continue reading