Chimica Fisica: La Termodinamica, La Meravigliosa Cattedrale Della Scienza. Parte I.

Indipendentemente dai motivi del culto, le antiche cattedrali invitano ad un’ammirata contemplazione, ispirano rispetto e quiete. Anche il visitatore piu’ disinvolto non si esimere dal moderare la voce, non insiste in argomenti futili: delle navate, l’eco delle sue stesse parole sembra destare insolite suggestioni. L’impegno di generazioni di architetti e di artigiani e’ stato dimenticato, le loro impalcature sono state rimosse ormai da lungo tempo, i loro stessi errori sono stati cancellati dai secoli. Il monumento che essi crearono, ora compiuto e perfetto, ci appare come la testimonianza di un disegno sopraordinario. Se evochiamo in noi il ricordo di un cantiere in attività, con il rumore ritmato dei martelli, le voci ed i gesti degli operai, l’odore stantio del legno e di tabacco, alle splendide structure che ora ammiriamo non possiamo attribuire altro significato che quello di essere il frutto di un ordine imposto alla mera fatica umana.

Anche la scienza ha i suoi templi, costruiti con gli sforzi di pochi architetti e di molto operai, e di fronte ad essi proviamo lo stesso sentimento. Anche in questi templi l’atmosfera e’ solenne, e forse lo e’ a tal punto da condizionare l’espressione stessa del pensiero scientifico, che una lunga tradizione vuole assai severo e formale.

G.N, Lewis, M. Randall -“Thermodinamica”, Leonardo Edizioni Scientifiche, Roma (1971).

INTRODUZIONE

Gilbert Newton Lewis e Merle Randall nella introduzione alla prima edizione del loro autorevole testo di termodinamica chimica descrivono  la termodinamica come la cattedrale della scienza. La loro non è solo una concessione poetica di un’epoca ancora permeata dal romanticismo scientifico, ma una meravigliosa analogia per questa fondamentale disciplina della scienza che più di ogni altra contiene  le leggi arcane che goverano il nostro Universo e il suo destino.

In questa serie di articoli riporto alcuni appunti su argomenti vari di termodinamica chimica che possono essere utili come riferimento o come materiale didattico.

Continue reading

Molekulare Maschinen: Die Coronavirus SARS-CoV-2 Bedrohung, Teil I.

Was Freunde mit und für uns tun, ist auch ein Erlebtes; denn es stärkt und fördert unsere Persönlichkeit. Was Feinde gegen uns unternehmen, erleben wir nicht, wir erfahren’s nur, lehnen’s ab und schützen uns dagegen wie gegen Frost, Sturm, Regen und Schloßenwetter oder sonst äußere Übel, die zu erwarten sind.

Johann Wolfgang von Goethe (1749-1832), Maximen und Reflexionen. Aphorismen und Aufzeichnungen.

Ein Virus ist Leben in der einfachsten Form. Es ist die minimalistische Reduktion eines Organismus auf seine wesentlichen Funktionselemente. Noch pragmatischer ist ein Virus ein Behälter mit genetischem Code mit einem effizienten molekularen Mechanismus, der es ihm ermöglicht, in eine Wirtszelle eines Organismus einzudringen, der sich selbstständig reproduzieren kann. Als molekulare Maschine kann ein Virus der Form und der zerstörerischen Kraft des Todessterns in der Star-Wars-Saga ähneln. Daher ist es eine Art molekulare Maschine, die wir absolut nicht in uns haben wollen!

Wie der große Goethe sagt, ist der Feind Teil unserer Erfahrung und wir müssen ihn jagen und uns tatsächlich vor anderen möglichen Feinden schützen. Dieser epische Naturkrieg veranlasste mich, diesen Blog zu starten, in dem ich mitteilen werde, was ich über diese gefährliche molekulare Maschine lerne.

Continue reading

Le Macchine Molecolari: La minaccia del Coronavirus SARS-CoV-2. Parte I

Difficilmente è vinto colui che sa conoscere le forze sue e quelle del nemico.

Nicollò Machiavelli in Dell’arte della guerra (1519-1520)

Un virus è la vita nella forma più semplice. È la riduzione minimalista di un organismo ai suoi elementi essenziali di funzionalità. Più pragmaticamente, un virus è un contenitore di codice genetico dotato di un efficiente meccanismo molecolare che gli consente d’invadere una cellula ospite di un organismo capace di riprodursi autonomamente. Come macchina molecolare, un virus può assomigliare nella forma e potere distruttivo, alla Morte Nera della saga di Star Wars. Pertanto, è un tipo di macchina molecolare che non vogliamo assolutamente avere dentro di noi!

La diffusione del coronavirus SARS-CoV-2 (COVID-19) ha prodotto una nuova pandemia, ovvero una infezione causata da un agente patogeno che colpisce l’intera popolazione di una specie vivente, in questo caso quella umana. Questa situazione di emergenza globale è il risultato di una competizione naturale tra specie viventi che ci rammenta di essere ancora un tassello nell’ecosistema di Gaia. Tuttavia, anche se sia sempre arduo da credere visto lo stato in cui abbiamo ridotto il nostro pianeta, siamo la forma di vita più intelligente nell’universo conosciuto. Quindi sarebbe abbastanza imbarazzante essere sconfitti da un nemico invisibile.

Continue reading

Retro programming nostalgia IV: L’Equilibrio e la Titolazione Acido/Base

La motivazione per questo articolo nasce dal mio interesse per il retro-computing connesso, da una parte, alla rivalutazione delle mie esplorazioni giovanili del calcolo scientifico in linguaggio BASIC e dall’altra, alla popolarità che, negli ultimi anni, stanno avendo nel settore amatoriale e della didattica i microcomputer su scheda singola  (single-board computer, quali, per esempio  il Raspberry Pi).  Questi piccoli computer hanno una potenza considerevolmente maggiore a un costo decisamente inferiore dei microcalcolatori degli anni 80. Questo ha reso possibile l’emulazione su questi calcolatori dei sistemi operativi di mitici modelli di home computer della Commodore e i modelli MSX.

Pertanto sta prendendo piede anche un rinnovato interesse nel linguaggio di programmazione BASIC. Questo interesse nel retro-computing riflette la nostalgia nelle grandi emozioni che negli anni 70-80 lo sviluppo della tecnologia informatica consumistica ha portato alla mia generazione. Ricordo che rimasi folgorato dalla creatività nell’uso e nella programmazione di questi microcomputer al punto che ha ridiretto i miei interessi scientifici e la mia carriera accademica. 

Ho raccontato in altri articoli delle mie prime avventure di programmazione con  home computer della Commodore e i sistemi MSX alla fine degli anni ’80 e inizi degli anni ’90 e delle mie riscoperte di archeologia informatica. Tra i reperti ho rinvenuto un piccolo programma che ho usato per studiare le titolazioni acido/base sviluppato in MSX BASIC. Pertanto ho colto l’occasione per scrivere delle note sull’equilibrio acido base  e la titolazione e quindi fornire una versione restaurata e migliorate del mio programma, a gli studenti appassionati di programmazione  che sono  alle prese con questo importante concetto della chimica analitica.

Continue reading

Modelling Natural Shapes: (Easter) Eggs 2020

One year ago, I wrote an article about the modelling of the egg shapes, promising at one point to come back on the topics. A next step in studying eggs shapes is to look to real one or a copy of it. A happy occasion for experimenting with the model using three-dimensional graphics and 3d Printing! That is a natural indeed step: take half of the symmetric curve representing the egg shape

y=T(1+x)^{\frac{\lambda}{1+\lambda}}(1-x)^{\frac{1}{1+\lambda}},

where T and \lambda are two parameters, and rotate it around the central axis

\begin{aligned} x'&=&x\\ y' &=&y*cos(\theta) \\ z' &=& y*sin(\theta) \end{aligned}

Continue reading

Molecular Machines: the Coronavirus SARS-CoV-2 Menace. Part I

If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle.”

SunTzu. The Art of War

A virus is the Bauhaus of the form of life: the minimalist reduction of an organism to its essential element of functionality. More pragmatically, it is a container of genetic code provided with a smart mechanism that allows it to invade cells of another host organism. As a molecular machine, a virus can resemble in shape and destructive power the Death Star spaceship of the Star War saga. Therefore, it is a molecular machine that we do not definitively want to have within us!

The spread of the coronavirus SARS-CoV-2 has produced a new pandemic, i.e. an infection caused by a pathogen that affects the entire population of a living species, in this case the human one. This global emergency situation is the result of a natural competition between living species that reminds us that we are still a small brick of the Gaia ecosystem. However, although it is always difficult to believe given the state in which we have reduced our planet, we are the most intelligent life form in the known universe. So it would be quite embarrassing to be defeated by an invisible enemy.

Continue reading

Physical Chemistry. The Particle in a Box I: the Schrödinger Equation in One-dimension

In 1926, the Austrian physicist Erwin Schrödinger (1887-1961) made a fundamental mathematical discovery that had a profound impact on the study of the molecular world (in 1933, Schrödinger was awarded with the Nobel prize in Physics just 7 years later his breakthrough discovery). He discovered that a state of a quantum system composed by particles (such as electrons and nucleons) can be described by postulating the existence of a function of the particle coordinates and time, called state function or wave function (\Psi, psi function). This function are solution of a wave equation: the so-called the Schrödinger equation (SE). Although the SE equation can be solved analytically only for relatively simple cases, the development of computer and numerical methods has made possible the application of SE to study complex molecular. 

Continue reading

The First 150 Years of the Periodic Table of the Elements

That the nobility of man, acquired in a hundred centuries of trial and error, lay in making himself the conquerer of matter, and that I had enrolled in chemistry because I wanted to remain faithful to this nobility. That conquering matter is to understand it, and understanding matter is necessary to understanding the universe and ourselves: and that therefore Mendeleev’s Periodic Table, which just during those weeks we were laboriously learning to unravel, was poetry, loftier and more solemn than all the poetry we had swallowed down in liceo; and come to think of it, it even rhymed!

Primo Levi, The Periodic Table.

This year marks the 150th anniversary of the periodic table of the elements (TPE) which currently has 118 entries, the latest arrival (the Tennessine) was discovered 10 years ago (2009), and I feel obliged as a chemist to give some a small informative contribution to celebrate this important event.

Continue reading

The Logistic Map and the Feigenbaum Constants: a Retro Programming Inspired Excursion

“… Mitchell Feigenbaum was an unusual case. He had exactly one published article to his name, and he was working on nothing that seemed to have any particular promise. His hair was a ragged mane, sweeping back from his wide brow in the style of busts of German composers… At the age of twenty he had already become a savant among savants, an ad hoc consultant [at Los Alamos National Laboratory, USA] whom scientist would go to see about any expecially intractable problem.”

James Gleick, Chaos: the amazing science of the unpredectable.

This year, on June 30th 2019, Mitchell J. Feigenbaum died at the age of 74. Feigenbaum was an American mathematician that became famous with the discovery of the universal constants that bear his name. In the middle of the ’80, reading Le Scienze magazine (the Italian edition of Scientific American) I got to know of the contribution to the chaos theory of this charismatic mathematician. In particular, I was delighted by reading the Douglas Hofstadter’s article in the rubric “Temi Metamagici” ( Methamagical themes) (Scientific American, November 1981). The article explained the emergence of the chaos in the iteration map of the logistic equation, the same equation deeply studied by Feigenbaum. The full story about the Mitchell Feigenbaum and his discovery of his universal constants is delightly narrated in the beautiful book Chaos:the amazing science of the unpredectable by J. Gleick [1]. Here it is just another small extract:

“… in the summer of 1975, at a gathering in Aspen, Colorado, he heard Steve Smale [another key mathematicial in the developing of the chaos theory, NDA] talk about some of the mathematical qualities of the same quadratic difference equation [the same studied by Robert May, NDA]. Smale seemed to think that there were some interesting open questions about the exact point at which the mapping changes from periodic to chaotic. As always, Smale had a sharp instinct for questions worth exploring. Feigenbaum decided to look into it once more.”[1]

Continue reading

Numerical Integration of Differential Equations. Part I.: Katherine Goble and the Euler’s Method.

This article was inspired by the beautiful 2016 movie Hidden Figures (based on the book of the same name by M. L. Shetterley) which tell the dramatic story of three talented black women scientist that worked as “human computers” for NASA in 1961 for the Mercury project.

Figure 1: Official theatrical poster of the movie and the phFoto of the real protagonist. From left to right. Mary Jackson, Katherine Goble and Dorothy Vaughan. (source: wikipedia)

In the movie, the mathematician Katherine Goble (interpreted by Taraji P. Henson), had a brilliant intuition on how to numerically solve the complex problem to find the transfer trajectory for the reentry into the Earth atmosphere of the Friendship 7 capsule with the astronaut John Glenn on board. In the particular scene, she was standing together with other engineers and the director of the Langley Research Center (a fictional character interpreted by Kevin Coster) in front of the vast blackboard looking to graph and equations when she says that the solution might be in the “old math” and she runs to take an old book from a bookshelf with the description of the Euler method. The scene is also nicely described in the youtube video lesson by Prof. Alan Garfinkel of the UCLA. A detailed description of the numerical solution based on the original derivation of K. Globe is in the Wolfram blog website.

Katherine Globe was using for these complex calculation her brilliant brain with the support of a mechanical calculator (the Friden STW-10, in the movie, this machine is visible in different scenes). In a scene of the film, she revealed that her typical computing performance was of 10000 calculations per day and probably for calculations, she was not referring to single arithmetic operations! These exceptional mathematical skills have given a significative contribution at the beginning of the American space program, but it became insufficient to handle the more complex mathematics necessary to land the man on the Moon, and the other fantastic NASA achievements.

Continue reading